Compute
$$i(t) = \frac{V_{max}}{|Z|}\cdot sin(\omega t + \alpha - \theta) - \epsilon^{-Rt/L}\cdot sin(\alpha - \theta)]$$ where $$|Z|=\sqrt{R^2 + (\omega L)^2}$$ $$\theta = tan^{-1}(\omega L/R)$$ $$\alpha - \theta = -\pi /2$$ $$\omega = 2\pi f$$